Name:	Date:
Unit 6 - Lesson 5	
Conceptual Understanding (Tier 1)	
Explain the concept of a monomial and provide evidence to support your explanation.	5. Evaluate the following product by applying the distributive property: 12(10+3). Is the product equivalent to the product you produced in problem #3? Why or why not?
2. Explain the concept of a polynomial and provide evidence to support your explanation.	6. Evaluate the following product by applying the distributive property: (10+2)13. Is the product equivalent to the product you produced in problem #3? Why or why not?
3. Explain the process for evaluating the followin product using the standard algorithm and evaluation 12(13).	
4. How many individual products does it take to	

multiply 12(13) using the standard algorithm? Write each of them below.

- 8. When applying the distributive property, how many individual products did it take to evaluate 10(10+3) + 2(10+3)? Are they the same individual products as you listed in problem #4? Why or why not?
- 12. Could you have produced the same product by rewriting the expression 12(13) as the expression (7+5)(7+6)? Why or why not? *Include the distributive property in your justification*.

- 9. Could the expression 10(10+3) + 2(10+3) be looked at as the sum of two terms? If so, are the terms like terms? *Explain*.
- 13. Could you have produced the same product by rewriting the expression 12(13) as the expression (6+6)(9+4)? Why or why not? *Include the distributive property in your justification*.

- 10. Is the expression 10(10+3)+2(10+3) equivalent to the expression (10+2)(10+3)? Why or why not?
- 14. Could you have produced the same product by rewriting the expression 12(13) as the expression (10+2)(15-2)? Why or why not? *Include the distributive property in your justification.*

- 11. Explain how to evaluate the expression (10+2)(10+3) by applying the distributive property and provide evidence to support your explanation.
- 15. Could you have produced the same product by rewriting the expression 12(13) as any expression (a+b)(c+d)? Why or why not? *Include the distributive property in your justification.*

16.	Following your responses to problems #3-11, what
	conjecture can you make about evaluating any
	product in the form $(a+b)(c+d)$? Provide
	evidence to support your conjecture.

20. 18(12)

21. 19(11)

Evaluate each of the following products two different ways:

1. following the standard algorithm

2. rewriting each factor as a sum of two numbers and applying the distributive property

17. 11(14)

22. 14(16)

18. 15(15)

23. 21(19)

19. 13(17)

24. 21(24)

25. 21(29)

26. 17(49)

27. Looking back at problem #17-26, did your work support your conjecture from problem #16? *Explain and provide evidence to support your explanation.*

28. Could you have produced the same product by rewriting the expression 12(13) as the expression (10+2)(10+2+1)? Why or why not? *Include the distributive property in your justification*.

29. When applying the distributive property, how many individual products would it take to evaluate (10+2)(10+2+1)? Write each of them below.

30. Could you have produced the same product by rewriting the expression 12(13) as the expression (10+1+1)(10+2+1)? Why or why not? *Include the distributive property in your justification*.

31. When applying the distributive property, how many individual products would it take to evaluate (10+1+1)(10+2+1)? Write each of them below.

32. Could you have produced the same product by rewriting the expression 12(13) as the expression (15-1-1-1)(15-2)? Why or why not? *Include the distributive property in your justification*.

- 33. When applying the distributive property, how many individual products would it take to evaluate (15-1-1)(15-2)? Write each of them below.
- 37. Can you produce a numerical product for the expression (x+2)(x+3)? Why or why not?

- 34. Following your responses to problems #28-33, what conjecture can you make about multiplying two sums or differences? *Provide evidence to support your conjecture*.
- 38. Could you follow the process you described in problem #16 to generate an expression involving only addition of monomials equivalent to the expression (x+2)(x+3)? If so, generate the equivalent expression.

- 35. In the product (a+b)(c+d), could a, b, c, and d represent any real number? Could they represent any variable? Could they represent any monomial? Explain your responses and provide evidence to support your explanations.
- Evaluate each product by applying the distributive property. Show each step of evaluating the product separately.
- 39. (x+5)(x+4)

- 36. How is the expression (x+2)(x+3) different from the expression (10+2)(10+3)?
- 40. (x+2)(x+7)

41.
$$(x+11)(x-3)$$

47.
$$\left(4x + \frac{1}{4}\right) \left(8x + \frac{3}{4}\right)$$

42.
$$(x-7)(x+4)$$

48.
$$(x+17)(x-17)$$

43.
$$(x-5)(x-4)$$

49
$$(x-9)(x-9)$$

44.
$$(2x+5)(x+4)$$

50.
$$(x^2+7)(x-13)$$

45.
$$(2x+5)(3x+4)$$

51.
$$(x^2-x)(-5x+11)$$

46.
$$(-5x+1)(3x-7)$$

52.
$$(x+1)(x^2+x+1)$$

56.
$$(x^2-5)(3x^2-6x+9)$$

53.
$$(x+2)(x^2+3x+6)$$

57.
$$(x^2 - x + 3)(x^2 + x + 2)$$

54.
$$(x-4)(2x^2+8x-7)$$

58.
$$(4x^2 + 3x + 2)(5x^2 - 2x + 3)$$

55.
$$(x^2+x+1)(3x-8)$$

Procedural Skill and Fluency (Tier 2)

Simplify each of the following expressions.

59.
$$(a+7)(a+9)$$

61.
$$(a+7)(a-9)$$

60.
$$(a-7)(a+9)$$

62.
$$(a-7)(a-9)$$

63.
$$(a-8)(a+6)$$

64.
$$(a-8)(a-6)$$

65.
$$(a+8)(a-6)$$

66.
$$(a+8)(a+6)$$

67.
$$(2a-5)(4a+3)$$

68.
$$(2a+5)(4a-3)$$

69.
$$(2a+5)(4a+3)$$

70.
$$(2a-5)(4a-3)$$

71.
$$(a+4)(a^2+a+12)$$

72.
$$(a^2+4)(a^2+a+12)$$

73.
$$(a^2 + 4a)(a^2 + a + 12)$$

74.
$$(a^2+4a+1)(a^2+a+12)$$

75.
$$(a+b)(a+b)$$

76.
$$(2a+b)(a+2b)$$

77.
$$(2a+3b)(3a+2b)$$

78.
$$(a+b)(a+b+c)$$

79.
$$(a+b+c)(a+b)$$

80.
$$(a+b+c)(a+b+c)$$