NEW LOUISIANA SCIENCE STANDARDS

Louisiana Science Teachers Association

June 8, 2017

Louisiana Science Teachers Association

PRESENTERS

Dr. Shannon Lafont – shannonlafont75@gmail.com Wendy DeMers – 2ydnew2@gmail.com

Louisiana Science Teachers Association

BEFORE YOU LEAVE TODAY...

- You should be able to:
 - Explain the parts of the standards
 - Talk the Talk
 - Understand this is a process and will require change
 - Inform your district leaders of possible next steps
 - Expand your network of colleagues

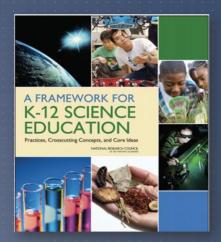
You will still need to:

- Continue the process of understanding the standard and the 3 dimensions
- Determine changes that will be required in your curriculum and instruction
- Communicate to district leaders the significance of the shifts and the developmental steps of implementation

WHAT HAS CHANGED?

TIMELINE ACTIVITY

WHAT HAS <u>NOT</u> CHANGED?


BACKGROUND

Current benchmarks were adopted in May 1997.
 GLE's were written in 2004.

The comprehensive curriculum for science was last updated in 2008 under Paul Pastorek.

- A Framework for K-12 Science Education published in 2012.
- NGSS (Next Generation Science Standards) were release in 2013.

BESE approved the adoption of new Louisiana Student Standards for Science, March 8, 2017.

MATTER AND ITS INTERACTIONS				
Performance Expectation	Develop models to describe the atomic composition of si	mple molecules and extended structures.		
Clarification Statement	Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include carbon dioxide and water. Examples of extended structures could include sodium chloride or diamond Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.			
	-	-		
Science & Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts		
 Asking questions and defining problems Developing and using models: Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and/or use a model to predict and/or describe phenomena. Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information 	STRUCTURE AND PROPERTIES OF MATTER Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS.PS1A.a) Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS.PS1A.e)	SCALE, PROPORTION, AND QUANTITY Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.		
DEPARTMENT of		1		

HTTP://WWW.LSTA.INFO/

MARCH 2017

8

3 DIMENSIONS

Science and Engineering Practices (SEP) Disciplinary Core Ideas (DCI) Crosscutting Concepts (CCC) http://www.nextgenscience.org/thr ee-dimensions

STANDARDS GALLERY WALK In your own words, define the following: Performance Expectation Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Share and discuss your definitions at the table. Using chart paper, write your group's definition of each term. ► Gallery walk

DISSECT A PERFORMANCE EXPECTATION

Look at a sample PE from the standards issued.
 Determine which part is the SEP, DCI, and CCC by highlighting each part a different color.
 https://www.nextgenscience.org/topic-

arrangement/kforces-and-interactions-pushes-and-

MATTER AND ITS INTERACTIONS

Performance Expectation	Develop models to describe the atomic composition of s	simple molecules and extended structures.		
Clarification Statement	Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include carbon dioxide and water. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.			
Science & Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts		
1. Asking questions and defining problems	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION, AND QUANTITY		
2. Developing and using models: Modeling in 6-8 builds on K-5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.	Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS.PS1.A.a)	Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.		
 Develop and/or use a model to predict and/or describe phenomena. 	Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g.,			
3. Planning and carrying out investigations	crystals). (MS.PS1A.e)			
4. Analyzing and interpreting data				
5. Using mathematics and computational thinking				
6. Constructing explanations and designing solutions				
Engaging in argument from evidence				
8. Obtaining, evaluating, and communicating information				
	(j			
DEDIDTMENT - 4				

MARCH 2017

1

Performance Expectation	Construct, use, and present arguments to support the cla energy is transferred to or from the object.	aim that when the kinetic energy of an object changes,
Clarification Statement	Examples of empirical evidence used in arguments could include an inventory or other representation of the en (i.e. mechanical, thermal, or other forms of energy) before and after the transfer in the form of temperature cha or motion of object. This does not include the quantification of the energy transferred in the system.	
Science & Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing solutions Engaging in argument from evidence: Engaging in argument from evidence in 6-8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). Construct, use, and/or present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Obtaining, evaluating, and communicating information	CONSERVATION OF ENERGY AND ENERGY TRANSFER When the kinetic energy of an object changes, there is inevitably some other change in energy at the same time. (MS.PS3B.a)	ENERGY AND MATTER Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).

MARCH 2017

5

SCIENCE AND ENGINEERING?

Card Sort:

Working with a partner, sort the cards provided into two sets: engineering and science practices. Without speaking with your partner, silently think about the differences between the two processes. Then with your partner discuss the differences.

SIMILARITIES AND DIFFERENCES **Engineering practices** Ask a question Obtain, evaluate and communicate information information Plan designs and tests Develop and use models Design and conduct tests of prototypes or models models Analyze and interpret data Use mathematics and computational thinking **Design solutions** using evidence Engage in argument using evidence

Science practices Obtain, evaluate and communicate Plan investigations Develop and use models Design and conduct tests of experiments or Analyze and interpret data Use mathematics and computational thinking **Construct explanations** using evidence Engage in argument using evidence

SCIENCE AND ENGINEERING PRACTICES: DEFINITION

Describe the major <u>practices</u> that scientists employ as they <u>investigate</u> and <u>build</u> models and theories about the world and a key set of engineering <u>practices</u> that engineers use as they <u>design</u> and <u>build</u> systems.

The term "practice" is used to emphasize that scientists and engineers use skill and knowledge simultaneously.

The integration of Science and Engineering Practices with science content represents a shift from previous science standards in Louisiana, giving the learning context and allowing students to apply scientific reasoning and critical thinking to develop their understanding of science.

SCIENCE AND ENGINEERING PRACTICES

The <u>8</u> science and engineering practices are:

- Ask questions (science) and define problems (engineering)
- Develop and use models
- Plan and conduct investigations
- Analyze and interpret data
- Use mathematical and computational thinking
- Construct explanations (science) and design solutions (engineering)
- Engage in scientific argument from evidence
- Obtain, evaluate, and communicate information

SEP CIRCUS ACTIVITY #1

Distribute the "Practices Circus chart handout" \triangleright Participants will have ~35 minutes to visit the 7 stations. > At each station, you should identify the practice best represented by the underlined portion of the prompt. After you are finished exploring, you should place a tally mark on the white board to vote for the one practice they identified at each station.

http://www.online-stopwatch.com/countdown-timer/

SCIENTIFIC AND ENGINEERING PRACTICES

Practice s	Station 1		Station 2	Station 3	Station 4 EGG	Station 5	Station 6		Station 7
	SOILS A	SOILS B	FLOWER	ICE MELTS	EARTH	YEAST	CRICKETS A	CRICKETS B	DIVER
Asking questions and defining problems						5: asking questions			
Developing and using models			2: models if drawing is for understanding		4: models				
Planning and carrying out investigations	1A: investigations								
Analyzing and interpreting data		1B: data if chart is for analysis					6A: data		
Using mathematics and computational thinking								6B: math	
Constructing explanations and designing solutions				3: explanations					
Engaging in argument from evidence									7: argument
Obtaining, evaluating, and communicating information		1B: communicating if chart is to share info	2: communicating if drawing is to share info						

Adapted from an activity created by the Exploratorium's Institute for Inquiry

California Academy of Sciences, 2013

SEP PROGRESSION

With a partner, identify and highlight difference(s) in progressions of one SEP between grade levels. SEP #I: Asking questions (10 min.)
 Compare differences identified with your table.
 Differences will be discussed whole group.

SEP PROGRESSION

With a partner, place descriptors in the correct grade progression/sequence. (SEP #2: Models)
Compare your progression with other groups. Make changes if needed.
Discuss whole group.

Science and Engineering Practices

Developing and Using Models: A practice of both science and engineering is to use and construct models as helpful tools for representing ideas and explanations. These tools include diagrams, drawings, physical replicas, mathematical representations, analogies, and computer simulations. Modeling tools are used to develop questions, predictions and explanations; analyze and identify flaws in systems; and communicate ideas. Models are used to build and revise scientific explanations and proposed engineered systems. Measurements and observations are used to revise models and designs.

K–2 Condensed Practices	3–5 Condensed Practices	6–8 Condensed Practices	9–12 Condensed Practices
Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.	Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.	Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.	Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).
 Distinguish between a model and the actual object, process, and/or events the model represents. Compare models to identify common features and differences. 	 Identify limitations of models. 	 Evaluate limitations of a model for a proposed object or tool. 	 Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism, or system in order to select or revise a model that best fits the evidence or design criteria. Design a test of a model to ascertain its reliability.
 Develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s). 	 Collaboratively develop and/or revise a model based on evidence that shows the relationships among variables for frequent and regular occurring events. Develop a model using an analogy, example, or abstract representation to describe a scientific principle or design solution. Develop and/or use models to describe and/or predict phenomena. 	 Develop or modify a model—based on evidence – to match what happens if a variable or component of a system is changed. Use and/or develop a model of simple systems with uncertain and less predictable factors. Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena. Develop and/or use a model to predict and/or describe phenomena. Develop a model to describe unobservable mechanisms. 	 Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system. Develop and/or use multiple types of models to provide mechanistic accounts and/or predict phenomena, and move flexibly between model types based on merits and limitations.
 Develop a simple model based on evidence to represent a proposed object or tool. 	 Develop a diagram or simple physical prototype to convey a proposed object, tool, or process. Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system. 	 Develop and/or use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. 	 Develop a complex model that allows for manipulation and testing of a proposed process or system. Develop and/or use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems.

Math

M1: Make sense of problems and persevere in solving them M2: Reason abstractly & quantitatively M6: Attend to precision M7: Look for & make use of structure M8: Look for & make use of **E6:** Use regularity technology in repeated & digital media reasoning strategically & capably

> *M5:* Use appropriate tools strategically

M4. Model with mathematics S2: Develop & use models S5: Use mathematics & computational thinking S5: Use mathematics & S3: Plan &

M3 & E4: Construct viable arguments and critique reasoning of others
E5: Value evidence
S7: Engage in argument from evidence

S1: Ask scientific questions and define engineering problems
S3: Plan & carry out investigations
S4: Analyze & interpret data
S6: Construct explanations & design solutions

S8: Obtain, evaluate, & communicate information E3: Obtain, synthesize, and report findings clearly and effectively in response to task and purpose

E1: Demonstrate independence in reading complex texts, and writing and speaking about them
E2: Build strong content knowledge through text
E7: Come to understand other perspectives and cultures through reading, listening,

and collaborations

DISCIPLINARY CORE IDEAS: DEFINITION

Represent a set of ideas that have broad importance across multiple disciplines; provide a key tool for understanding or investigating more complex ideas and solving problems; relate to the interests and life experiences of students; be teachable and learnable over multiple grades at increasing levels of sophistication.

Each DCI is <u>what students are supposed to know by the end of the grade level</u> and requires prior knowledge/experience.

Disciplinary Core Ideas are grouped into five domains:

- Physical Science (PS)
- Life Science (LS)
- Earth and Space Science (ESS)
- Environmental Science (EVS)
- Engineering, Technology, and Applications of Science (ETS)

PROGRESSION OF DISCIPLINARY CORE IDEAS

Using the DCI handout List the main differences between K-2/3-5, 3-5/6-8, 6-8/9-12 and transfer the list to the chart paper

CCC SPEED DATING

Each participant will be given a card with either the title of a CCC (e.g.; Patterns, Cause and Effect, etc.) or a CCC definition.
Your task is to mingle around the room looking for your CCC match.
NOTE: There are multiple copies of each CCC title and definition.
When you find your match, sit down together at any table to show that you have completed the activity.

Speed Dating Definitions (KEY)

Patterns	The CCC of highlights that structures or events are often consistent and repeated.
Cause and effect	The CCC of investigates how things are connected by identifying the reasons behind an occurrence, and what that occurrence results in.
Scale, proportion, and quantity	Different measures of size and time affect a system's structure, performance, and our ability to observe phenomena.
Systems and system models	The CCC of helps us understand the world by describing how things connect and interact. We can use simple representations to explore these interactions.
Energy and matter	These things are neither created nor destroyed, but may flow into and out of a system and influence its functioning.
Structure and function	The way something is built and the parts that it has determine how it works.
Stability and change	Over time, a system might stay the same or become different, depending on a variety of factors.

CROSSCUTTING CONCEPTS: DEFINITION

Represent common threads or themes that span across science disciplines (biology, chemistry, physics, environmental science, Earth/space science) and have value to both scientists and engineers because they identify universal properties and processes found in all disciplines.

Where applicable, each standard includes one of the Crosscutting Concepts, thereby ensuring that the concepts are not taught in isolation but reinforced in the context of instruction within the science content.

CCC STATION ROTATION

The goal of this activity is begin to see what content or topics might be related to each CCC.

Each participant will have a worksheet and will be visiting stations 1-7.

At each station, you will see 3-5 examples of mostly science content that is related to one CCC. Some stations also include examples of non-science content.

Your task is to identify the CCC that unifies all of the examples at the station. Record your matches on the worksheet.

The notes column can be used to jot down any thoughts about how you made the match, or ideas of other things that could fit into this CCC.

> You will work in groups of 4-5. You can visit the stations in any order.

CCC STATION ROTATION WRAP-UP

Do you see any connections or overlap among the CCCs?
How might the CCCs help integrate science with other subjects?

CCC STATION ROTATION KEY

ССС	Content Example
Patterns	Moon phases, monthly precipitation (SF and Perth, Australia), Fibonacci sequence
Cause and Effect	Rachel and Alex juice story, population changes, Rube Goldberg
Scale, proportion, and quantity	Solar system and football field, large sample size, female participants
Systems and system models	US gov't., human circulatory system, water cycle
Energy and matter	Trophic levels, fire images, E=mc2
Structure and function	Predator and prey, sustainable design, bridges
Stability and change	Rock cycle, insect life cycles, temperature/CO2

WHAT DOES THIS LOOK LIKE IN A CLASSROOM?

https://www.nextgenscience.org/resources/video-making-

claims-evidence

HTTP://WWW.LSTA.INFO/

SUMMARY: CONCEPTUAL SHIFTS

Reflects how science is done in the real-world by intertwining the 3 dimensions.

> Are student performance expectations-NOT curriculum. Builds coherently from grades K through I2. Focuses on deeper understanding of content and application. Integrates science, technology, and engineering. Aligns with math and ELA standards.

RESOURCES

- http://www.louisianabelieves.com/resources/library/academicstandards
- https://www.nap.edu/catalog/13165/a-framework-for-k-12
 - science-education-practices-crosscutting-concepts
- http://www.nextgenscience.org/
- https://www.calacademy.org/educators/ngss-demystified-training
 - video-gallery
- http://www.lsta.info/
- http://www.nsta.org/

QUESTIONS

Contact Information
Before you leave...
Establish a network of colleagues to share information.
Share contact information with those at your table.
EXIT TICKET & TREAT!!

Louisiana Science Teachers Association