

Our Mission Advancing Public Education at Scale

- **01** 70+-member team works across K–12 and higher education systems
- 02 Bring equity lens to ensure every student has access to high-quality, relevant mathematics & science education that's central to their postsecondary & career success
- 03 Nearly 30 years of experience, bringing deep understanding of how to navigate complex education systems

Learning Expectations

Participants will...

- Explore the Louisiana Instructional Model for Science through looking at an OpenSciEd unit
- Consider how the Instructional Model supports units in being phenomenon-based, coherent for students, driven by evidence, collaborative, and equitable
- Analyze how the Planning Guide for Science Instruction can be used to unpack and plan for three-dimensional instruction

The University of Texas at Austin Charles A. Dana Center

Reflection Lenses

- Phenomenon-based
- Coherent for students
- Driven by evidence
- Collaborative
- Equitable

Slide E	
Develop Initial Models	
Develop an initial model to explain, "Why would a sound coming from or thing make another thing far away move?" Use <i>pictures, symbols,</i> and we in your model to help represent and further explain what you think is happening in each of the 3 locations on a zoomed-in scale.	one words
→ Record question come to mind a constructing you	ons that as you are our model.

Slide I
Where have you seen something like this?
Add a "Related phenomena" section to your science notebook and jot down other experiences you have had that relate to what we've observed so far.
Use these questions to guide your brainstorming:
 When or where have you seen before a time where an object making sounds caused something to move or shake, like the window in the video?
 When or where have you seen sounds being made before? What was making those sounds?
 When or where have you experienced a sound being received before? What objects have you seen receiving sounds besides the window in the video?
 Have you ever experienced a sound going over a distance, like in the video?

Phenomenon-based Coherent for students Driven by evidence Collaborative Equitable

Slide E		
Slow-Motion Videos		
Add each sound southey are played.	irce to your observation	on table as
	Data source	Observations

Slide O		
Progres	ss Tracker: What hav	ve we figured out?
8	Question	Source of evidence
	What is happening when speakers and instruments make sounds?	Observations and slow-motion videos of a speaker and instruments
	What we figured ou	ıt (in words/pictures)

Investigation Routine Reflection

- Phenomenon-based
- Coherent for students
- Driven by evidence
- Collaborative
- Equitable

Navigation Routine Reflection

- Phenomenon-based
- Coherent for students
- Driven by evidence
- Collaborative
- Equitable

Problematizing Routine Reflection

- Phenomenon-based
- Coherent for students
- Driven by evidence
- Collaborative
- Equitable

Putting Pieces Together Routine Reflection Phenomenon-based Coherent for students Driven by evidence Collaborative Equitable

Communicating Scientific Reasoning Reflection Phenomenon-based Coherent for students Driven by evidence Collaborative Equitable

The University of Texas at Austin W Charles A. Dana Center

Planning Guide for Science Instruction

Tool to support teachers as they:

- collaboratively prepare to deliver high quality instruction.
- collaboratively analyze student work.

Step 1: Unit Unpacking Louisiana STUDENT Selected question from DCI LEARNING PROGRESSIONS Step 1: Unit Unpacking Disciplinary Core Ideas: Physical Science – Waves and their Applications (PS4) PS4.A: Wave Properties Grade 6: MS.PS4A.a pattern wi How will students deepen MS.PS4A.b A sound wave ne through which it is transmitte their understanding of the three dimensions by PS4.B: Electron building on previously learned content? Page A-23 in https://www.louisianabelieves.com/docs/default-source/teacher-toolboxresources/appendix-a---learning-progressions.pdf

Planning Guide for Science Instruction	
Step 3: Lesson Set Annotation	Time Estimate: 60 minute
Question: How will students incrementally develop an unde Purpose: Team members annotate sequences of lessons to o to make instructional decisions that best meet the intent of th	rstanding of the anchoring phenomenon and science concepts? determine where incremental sense-making occurs in the unit of study, in order to be able he standards and the needs of all students.
Choose a lesson set from the current unit of study	Annotation Discussion Questions
Critically read the lesson-set performance expectation(s).	What Science and Engineering Practice(s) will students use?
	Where are the conceptual checkpoints for the Disciplinary Core Idea(s)?
	How will students apply the Crosscutting Concept(s)?
Identify competing ideas that students may have about phenomena.	How will you leverage these ideas during student sense-making and argumentation?
Identify instructional routines you'll use throughout the un of study (e.g., Science Instructional Model).	it What strategies, routines, and discussion protocols will you use for each lesson set?
	What tools and resources will you use to plan facilitation?
Determine how student understanding will be assessed after the lesson set.	r Identify 2 to 3 of the critical tasks in the lesson set. Create or review exemplar student responses.
	Note key understandings you will look for or listen for in each teak

ent Wor	k Analysis
	Planning Guide for Science Instr
Step 4: Student Work Analys	is Time Estimate: 40 i
Question: How do you use th	rree-dimensional assessments to evaluate students' understanding?
Purpose: Team members est from that analysis determine	ablish norms for evaluating student work, analyze student work to formatively assess students' understanding, a the implications for instructional practice and effectiveness.
Student Work Analysis Proto	col
Step 2: Identify exem Step 3: Analyze stude Step 4: Identify and d Step 5: Plan for future Choose a formative assessme	plar student responses. nt work. is instruction. nt Annotation Discussion questions
Analyze Student Work	Where do you see evidence of students using the Science and Engineering Practices?
	Where are students applying content knowledge?
	How are students connecting ideas using crosscutting concepts?
	What are patterns and trends in what students know and can do?
Plan for Future Instruction	Based on this student work analysis, what are the implications for future instruction?
Plan for Future Instruction	
Plan for Future Instruction	What is the plan for responding to students' needs for just in time support and enrichment?

Step 4: Student Work Analysis

- Identify criteria for analyzing student work using the performance expectation(s) and task.
- 2. Identify exemplar student responses.
- 3. Analyze student work.
- 4. Identify and discuss trends.
- 5. Plan for future instruction.

Reflection

mage credit: baramee2554/iStock/Thinkstock

What caught my attention in this session?

Gut?

- What surprised me?
- What was unclear?

So what?

• What are the implications for me as a science education leader?

Now what?

• What are my next steps?

The University of Texas at Austin Charles A. Dana Center

Communicating Scientific Reasoning Reflection

- Phenomenon-based
- Coherent for students
- Driven by evidence
- Collaborative
- Equitable

References

Slide 6: OpenSciEd. (2020 August). "OpenSciEd Key Instructional Elements." <u>https://issuu.com/openscied/docs/day 1.1 introduction - key instructional elements</u> or page 10 in Teacher Handbook: Middle School Science, version 3.0: <u>https://www.openscied.org/wp-content/uploads/2019/08/Aug-</u> <u>2020 -Beta-Open-SciEd-Teacher-Handbook.pdf</u> | This and other OpenSciEd content used under OpenSciEd Creative Commons license, Attribution 4.0 International (CC BY 4.0) at <u>https://creativecommons.org/licenses/by/4.0</u> | Full license: <u>https://creativecommons.org/licenses/by/4.0/legalcode</u>

Slides 7, 18, 19, 21, 36, 38, 39, 46, 47, 48, 51, 52, 54, 57, 58: Adapted from OpenSciEd Instructional Model, available via https://www.openscied.org/openscied-instructional-model

Slides 8–17, 22–35, and 40, 42–45, 50, 53, 55, 58, 63 are taken from, adapted from, or include materials from OpenSciEd. Unit 8.2 "Sound Waves" available via <u>https://www.openscied.org/instructional-materials/8-2-sound-waves</u> | The related handout OpenSciEd. (2020 December 3). Lesson 1 in "How can a sound make something move?," is from 8.2 Sound Waves – Unit Overview, available via <u>https://www.openscied.org/8-2-sound-waves-overview</u>

Slide 64: Page A-23 in <u>https://www.louisianabelieves.com/docs/default-source/teacher-toolbox-resources/appendix-a---learning-progressions.pdf</u>

Direct questions or feedback to <u>STEM@la.gov</u>.